Exam I, MTH 205, Fall 2015

Ayman Badawi

QUESTION 1. CLEARLY circle the correct answer:

(i) $\ell\left\{(x-1)^{2}\right\}=$
(a) $\frac{2}{s^{3}}-\frac{2}{s^{2}}+\frac{1}{s}$
(b) $\frac{2}{(s-1)^{3}} \quad$ (c) $\frac{e^{s}}{s^{2}}$
(d) Something else
(ii) $\ell\{U(x-3) \sin (x-3)\}$
(a) $\frac{e^{-3 s}}{s^{2}+1}$
(b) $\frac{e^{-3 s}}{(s+3)^{2}+1}$
(c) $\frac{e^{-3 s}}{(s-3)^{2}+1}$
(d) something else
(iii) $\ell\left\{\int_{0}^{x} \sin (r) e^{3 r} d r\right\}$:
(a) $\frac{1}{s\left((s-3)^{2}+1\right)}$
(b) $\frac{1}{\left(s^{2}+1\right)(s-3)}$
(c) $\frac{1}{\left((s-3)^{2}+1\right)(s-3)}$
(d)

Something else
(iv) $\ell^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$
(a) $\cos (x) e^{-x}$
(b) $\cos (x) e^{-x}$
$-\sin (x) e^{-x}$
(c) $\cos (x) e^{x}$
(d) $c_{1} e^{-x}+c_{2} x e^{-x}$ for some constants $c_{1}, c_{2} \quad$ (e) Something else
(v) Given $y=3 \cos (2 x)$ is a solution to the diff. equation $\left.y^{(2}\right)+a y^{\prime}+b y=0$, where a, b are some constants. Then the values of a, b are
(a) $a=0, b=3$
(b) $a=0, b=4$
(c) $a=3, b=4$
(d) $a=3, b=2$
(d) there are infinitely many values for a, b, more info. is needed
(vi) Given $2 x^{2} e^{-x}$ is a particular solution to the diff. equation $y^{(2)}+a y^{\prime}+b y=4 e^{-x}$ for some constant a, b. Then the values of a, b are
(a) $a=-1, b=2$
(b) $a=2, b=1$
(c) $a=4, b=1$
(d) $a=2, b=-1$
(e) Something else
(vii) A particular solution to the diff. equation $y^{\prime}+2 y=1-\int_{0}^{x} y(r) d r$ is
(a) $y_{p}=x^{2} e^{-x}$
(b) $y_{p}=e^{-x}$
(c) $y_{p}=x e^{-x}$
(d) $y_{p}=2 x$
(e) Something else
(viii) The solution to the diff. equation $y^{(2)}-4 y^{\prime}+4 y=U(x-3) e^{(2 x-6)}, y(0)=y^{\prime}(0)=0$ is
(a) $y=u(x-3) x^{2} e^{2 x}$
(b) $y=0.5 U(x-3) x^{2} e^{2 x}$
(c) $y=0.5 U(x-3)(x-3)^{2} e^{(2 x-6)}$
(d) Something else
(ix) The general solution to the diff. equation $y^{(5)}+y^{(3)}=0$ is
(a) $y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} \cos (x)+c_{5} \sin (x)$
(b) $y=c_{1}+c_{2} \sin (x)+c_{3} x \sin (x)$
(c) $y=c_{1}+c_{2} \cos (x)+c_{3} \sin (x)$
(d) Something else
(x) $\ell^{-1}\left\{\frac{s+2}{s^{2}-3 s+2}\right\}=$
(a) $4 e^{2 x}+e^{x}$
(b) $4 e^{2 x}-3 e^{x}$
(c) $4 e^{x}+3 e^{2 x}$
(d) $\cos (x) e^{-2 x}$
(e) Something else
(xi) $\ell^{-1}\left\{\frac{3 s+4}{(s+1)^{2}}\right\}=$
(a) $3 x^{2} e^{-x}+4 x e^{-x}$
(b) $3 e^{-x}+x e^{-x}$
(c) $3 x e^{-x}+4 x^{2} e^{-x}$
(d) Something else
(xii) Given that $y^{(2)}+y=0$, has infinitely many solutions when $y(\pi / 2)=1$ and $y^{\prime}(\pi)=a$, for some constant a. Then the value of a is,
(a) 1
(b) -1
(c) can be any real number
(d) Something else
(xiii) The largest interval around x where the diff. equation $\sqrt{x+3} y^{(2)}+\frac{1}{x-6} y^{\prime}+x y=$ 3, $y(0)=y^{\prime}(0)=1$ has a unique solution is
(a) $(-3, \infty)$
(b) $(6, \infty)$
(c) $(-3,6)$
(d) Something else
(xiv) $\ell\left\{x^{2} 3^{x}\right\}=$
(a) $\frac{2}{(s-3)^{3}}$
(b) $\frac{2}{(s-3)^{2}}$
(c) $\frac{2}{(s-\sqrt{3})^{3}}$
(d) Something else
(xv) The solution to the diff. equation $y^{\prime}+2 y=e^{-2 x}-\int_{0}^{x} e^{-2 r} y(x-r) d r, y(0)=0$ is
(a) $y=\sin (x) e^{-2 x}$
(b) $y=x^{2} e^{-2 x}$
(c) $y=x e^{-2 x}$
(d) Something else

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Name Abdull Kayyanit ho10059758

Exam II, MTH 205, Fall 2015
Ayman Badawi

QUESTION 1. (i) Find the general solution to the Diff. Equation $(2 x+1) y^{\prime}-y=y^{3}(2 x+1) e^{\left(-2 x^{2}-2 x+7\right)}$

$$
\begin{aligned}
& \text { bernouti } \\
& \text { Ho } \\
& \Rightarrow \omega^{\prime}+\frac{\frac{2}{2 x+1}}{Q_{(x)}} \omega=\frac{-2 e^{-2 x^{2}-2 x+7}}{k(x)} \\
& \Rightarrow \omega=\frac{\int k(x) e^{\int Q(x) d x}}{e^{\int Q(x) d x}}=\frac{\int-2 e^{-2 e^{2}-2 x+7} e^{\int \frac{2}{2 x+1}}}{e^{\int \frac{2}{2 x+1} d x}} \\
& =\frac{\int-2(2 x+1) e^{\frac{-2 x^{2}-2 x+74 x}{d x}}}{2 x+1} \\
& -2 x^{2}-2 x+7 \\
& d u=-4 \times-2 \\
& =-2(2 x+1) \\
& =\frac{e+c}{2 x+1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow w=y^{-2}=\frac{e^{-2 x^{2}-2 x+7}+C}{2 x+1} \\
& \Rightarrow y=\sqrt{\left(\frac{2 x+1}{-2 e^{2}-2 x+7}+C\right.}
\end{aligned}
$$

(ii) Find the general solution to the Diff. Equation $\frac{x^{2} y^{(2)}+x y^{\prime}+y=\ln (x)}{\text { Cauchy }} \rightarrow y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=\frac{\ln x}{x^{2}}$
\Rightarrow For $y_{n} \neq$ let $y=x^{n}, y^{\prime}=n x^{n-1}, y^{\prime \prime}=n(n-1) x^{n-2}$
\Rightarrow So $[n(n-1)+n+1] x^{n}=0$
\Rightarrow So $n(n-1)+n+1=0$

$$
\begin{aligned}
& \Rightarrow n^{2}-n+n+1=0 \\
& \Rightarrow n^{2}+1=0 \\
& \Rightarrow n= \pm i
\end{aligned}
$$

$-u \cos u+\sin u$
\Rightarrow So $y_{h}=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)$
Flip paged
\Rightarrow for $y_{p} \Rightarrow$ let $y_{1}=\cos (\ln x), y_{2}=\sin (\ln x), k(x)=\frac{\ln x}{x^{2}}$

$$
\begin{aligned}
& \text { For } \quad y_{p} \Rightarrow \text { lex } \\
& \Rightarrow \quad \omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos (\ln x) & \sin (\ln x) \\
\frac{-\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x}
\end{array}\right|=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y_{p}=y_{2} \int \frac{y_{1} k(x)}{w\left(y_{1}, y_{2}\right)} d x-y_{1} \int \frac{y_{2} k(x)}{\omega\left(y_{1}, y_{2}\right)} d x \\
&=\sin (\ln x) \cdot \int \frac{\cos (\ln x) \ln x / y_{2} x-\cos (\ln x)}{y x} \int \frac{\sin (\ln x) \ln x / \pi d x}{y x} \\
&=\sin (\ln x) \cdot \int \frac{\ln x \cos (\ln x) d x-\cos (\ln x) \int \frac{\int \ln x \sin (\ln x)}{x} d x}{x} \\
&=\sin (\ln x) \cdot(\ln (x) \sin (\ln x)+\cos (\ln x))-\cos (\ln x) \cdot(-\ln (x) \cos (\ln x) \\
&+\sin (\ln x))
\end{aligned}
$$

$$
\begin{aligned}
& =\ln x\left(\sin ^{2}(\ln x)+\cos ^{2}(\ln x)\right)+\cos (\ln x) \sin (\ln x)-\cos (\ln x) \sin (\ln x \\
& =\ln (x) \\
& \Rightarrow y_{p}=\ln x \\
& \Rightarrow y=y_{h}+y_{p}=
\end{aligned}
$$

(iii) Find the solution to the Diff. equation $y^{\prime}-\frac{1}{x} y=(1+x \ln (x)) e^{x}, y(1)=4$

$$
\begin{aligned}
& \Rightarrow \quad \underbrace{\prime}_{G(x)}-\frac{1}{x} y=\underbrace{(1+x \ln x) e^{x}}_{K(x)} \\
& \Rightarrow y=\frac{\int k(x) e^{\int(\alpha(x) d x}}{\iint(a(x) d x}=\frac{\int(1+x \ln x) e^{x} \cdot e^{-\int \frac{1}{x} d x} d x}{e^{-\int \frac{1}{x} d x}} \\
& =\frac{\int \frac{(1+x \ln x) e^{x}}{x} d x}{1 / x} \\
& =\frac{\int\left(\frac{1}{x}+\ln x\right) e^{x} d x}{1 / x} \\
& =\frac{(\ln x) e^{x}+c}{1 / x} \\
& y=(x \ln x) e^{x}+c x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad c=4 \\
& \Rightarrow y=(x \ln x) e^{x}+4 x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =y_{2} \int \frac{y_{1} k(x)}{w\left(y_{1} y_{2}\right)} d x-y_{1} \int \frac{y_{2} k(x)}{w\left(y_{1}, y_{2}\right)} d x \\
& =e^{x} \cdot \int \frac{(x+1) \cdot\left(x e^{x}\right)}{\left(x e^{x}\right)} d x-(x+1) \int \frac{e^{x} \cdot\left(x e^{x}\right)}{\left(x e^{x}\right)} d x \\
& =e^{x} \cdot \int(x+1) d x-(x+1) \int e^{x} d x \\
& =e^{x} \cdot\left(\frac{x^{2}}{2}+x\right)-(x+1) e^{x}=e^{x} \cdot\left(\frac{x^{2}}{2}-1\right) \\
\Rightarrow y & =y_{h}+y_{p}=\left(c_{1}(x+1)+c_{2} e^{x}+e^{x}\left(\frac{x^{2}}{2}-1\right)\right.
\end{aligned}
$$

(iv) Find the general solution to the Diff. Equation $x y^{(2)}-(x+1) y^{\prime}+y=x^{2} e^{x}$, given $y=-e^{x}$ is a solution to the homogeneous part.

$$
G \quad y^{\prime \prime}-\underbrace{\left(1+\frac{1}{x}\right)}_{\theta(x)} y^{\prime}+\frac{y}{x}=x e^{x}
$$

\Rightarrow for y_{h}, let $y_{1}=-e^{x}$

$$
\begin{aligned}
\Rightarrow \text { so } y_{2} & =y_{1} \int \frac{e^{-\int a(x) d x}}{y_{1}^{2}} d x \\
& =-e^{x} \cdot \int \frac{e^{\int(1+1 / 2) d x}}{e^{2 x}} d x \\
& =-e^{x} \cdot \int \frac{e^{x+\ln x}}{e^{2 x}} d x \\
& =e^{x} \cdot \int \frac{x e^{x}}{e^{2 x}} d x \\
& =-e^{x} \cdot \int x e^{-x} d x \\
& =-e^{x} \cdot\left(-(x+1) e^{-x}\right)=(x+1) \\
\Rightarrow & \text { so } y_{h}=c_{1}(x+1)+c_{2} e^{x}
\end{aligned}
$$

\Rightarrow for y_{p}, let $y_{1}=(x+1), y_{2}=e^{x}, k(x)$

$$
\begin{gathered}
\text { for } y_{p}, \text { let } y_{1}=(x+1), e^{x}=x e^{x} \\
\Rightarrow w\left(y_{1}, y_{2}\right)=\left|\begin{array}{c|c}
x+1 e^{x} \\
1 e^{x}
\end{array}\right|=x e^{x}+e^{x}-e^{x}=x e^{x} \quad \text { flip page! }
\end{gathered}
$$

（v）A 39.2 好解的 attached to a spring having a spring constant $4 \mathrm{~N} / \mathrm{m}$ ．At $t=0$ ，the object is released from a point 1.5 meter below the equilibrium position with an upward velocity $1 \mathrm{~m} / \mathrm{s}$ and with constant external force $F(t)=14$ ．
a）Find the equation of the motion，$x(t)$ ．

$$
\begin{aligned}
& \Rightarrow x^{\prime \prime}+\frac{a}{m} x^{\prime}+\frac{k}{m} x=\frac{F(t)}{m} \\
& \Rightarrow x^{\prime \prime}+x=\frac{14}{4} \\
& \Rightarrow x^{\prime \prime}+x=\frac{7}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow m=\frac{39.2}{9.8}=4 k g \\
& \Rightarrow a=0 \\
& \Rightarrow k=4 \\
& \Rightarrow x(0)=1.5 \mathrm{~m} \\
& \Rightarrow x^{\prime}(0)=-1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\Rightarrow For X_{h} ，let $X=e^{m^{\frac{1}{2}}}$ so $m^{2}+1=0, m= \pm i$

$$
\Rightarrow \quad x_{n}=c_{1} \cos t+c_{2} \sin t
$$

\Rightarrow for X_{p} ，let $x=A$ so $A=\frac{7}{2}=x_{p}$
b）Find the phase angle ϕ and rewrite $x(t)$ using the angle e．$\quad \Rightarrow x(t)=\frac{7}{2}+c_{1} \cos t+c_{2} \sin t$

$$
\begin{aligned}
x(t) & =3.5-\sqrt{2^{2}+1^{2}} \cdot \cos \left(t-\tan ^{-1}\left(\frac{1}{2}\right)\right) \\
& =3.5-\sqrt{5} \cos (t-0.46365) \\
& \Rightarrow \quad \varphi=\tan ^{-1}\left(\frac{1}{2}\right)=0.46365
\end{aligned}
$$

$$
\Rightarrow 1.5=x(0)=3.5+c_{1}
$$

$$
\Rightarrow c_{1}=-2
$$

$$
\frac{x^{\prime}(t)=2 \sin t+G^{2}}{}
$$

$$
\begin{aligned}
& \Rightarrow-1=x^{\prime}(0)=c_{2} \\
& \Rightarrow c_{2}=-1 \\
& \Rightarrow x(t)=3 \cdot 5-(2 \cos t \\
& +\sin t)
\end{aligned}
$$ d）If my claim is correct as in（c），the

pass through the equilibrium point？
flip page

Faculty information
Ayman Badawi，Department of Mathematics \＆Statistics，Amertean University of Shariah，P．O．Box 26666，Shariah，United Arab Emirates．
E－mail：abadawi
for c）and d）flip page
\Rightarrow c) $x(t)=3.5-\sqrt{5} \cos (t-0.46365) \geqslant 0$
because I

$$
35-\sqrt{5}(1) \leqslant 3.5-\sqrt{5} \cos (t-0.46365) \leqslant 3.5-\sqrt{5}(-1)
$$

$$
\frac{c^{1.264}}{70} \leqslant 3.5-\sqrt{5} \cos (t-0.46365) \leqslant \underbrace{5.736}_{>0}
$$

or if $3-5-\sqrt{5} \cos (t-0.46365)=0$
$\Rightarrow d$
for the object to pass through equilibrimen,

$$
\Rightarrow \frac{\cos (t-0-46369)=\frac{3.5}{\sqrt{5}}=1.5652>1}{7}
$$

impossible!!
so the object never passes through equilibrium
so

Final Exam , MTH 205, Fall 2015

Ayman Badawi

QUESTION 1. (8 points) Consider the differential equation $(2 x y+4) d x+\left(x^{2}-y^{2}\right) d y=0$. a)Check whether the equation is exact.
b)Find the general solution (i.e., $y(x)$) to the equation.

QUESTION 2. (10 points) Find the general solution in explicit form to the differential equation $\frac{d y}{d x}=y^{2} e^{-x}$

QUESTION 3. (8 points) Consider the differential equation $\frac{d y}{d x}=y^{3}+2 y^{2}+y$
a) Find all equilibrium points of this nonlinear differential equation and classify each as stable, semi-stable or unstable.
b) If $y(0)=-4$, then find $\lim _{x \rightarrow \infty} y(x)$

QUESTION 4. (8 points) (a) Find the general solution to $y^{(5)}+2 y^{(4)}+y^{(3)}=0$
b) For the differential equation $y^{(5)}+2 y^{(4)}+y^{(3)}=20+\left(x^{2}+x^{3}\right) e^{-x}$ write down the form of y_{p} but do not find it.

QUESTION 5. (8 points) Solve for $\mathrm{y}(\mathrm{x}): y^{\prime}+2 y=1-\int_{0}^{x} y(r) d r, y(0)=0$.

QUESTION 6. (10 points) Find the general solution to $x^{2} y^{(2)}+x y^{\prime}+y=\sec (\ln x)$

QUESTION 7. (8 points) A water tank initially contains 300 gallons of pure water. Brine with a concentration of 3 pounds per gallon is being pumped into the tank at a rate of K gallons per minute where $K>0$ is some constant. The well mixed solution is pumped out at the same rate (i.e., K gallons per minute).
a) Find $A(t)$ (amount of salt at any time t , where t is time in minutes), note that you need to write $A(t)$ in terms of t and K.
b) Given that the amount of salt in the tank after 5 hours is 450 pounds find the value of K .

QUESTION 8. (8 points) An object weighing 8 pounds stretches a spring by 2 feet.
a) Find the mass and the spring constant. (note that gravity $=g=32 \mathrm{ft} / \mathrm{sec}^{2}$).
b) Find the equation of motion $x(t)$ if the object is released from the equilibrium position with downward velocity of $1 \mathrm{ft} / \mathrm{sec}$.
c) Rewrite $x(t)$ in terms of the phase angle.
c) Let L be the maximum distance that the object reaches below the equilibrium point and G be the maximum distance that the object reaches above the equilibrium point. Find L and G.

QUESTION 9. (21 points) Find the following transformations:
(i) $\ell\left\{\left(x+e^{x}\right)^{2}\right\}$
(ii) $\ell\{U(x-\pi) \sin (x)\}$.
iii) $\ell\{x \delta(x-2)\}$.
iv) $\ell\{f(x)\}$, where $f(x)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq x<1 \\ e^{(1-x)} & \text { if } & 1 \leq x<\infty\end{array}\right.$.
$(\mathrm{V}) \ell^{-1}\left\{\frac{s+4}{s^{2}+4 s+5}\right\}$
vi) $\ell^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+4}\right\}$
ii) $\ell^{-1}\left\{\frac{3 s}{\left(s^{2}+9\right)^{2}}\right\}$ (Use convolution)

QUESTION 10. (4 points) Find the largest interval for which the initial value problem:
$\sqrt{x+6} y^{(2)}+\frac{3}{x-10} y^{\prime}+6 y=\frac{1}{x-5}, y(-3)=0, y^{\prime}(-3)=1$ has a unique solution.

QUESTION 11. (8 points) Solve for $x(t), y(t): y^{\prime}-x=0$ and $y+x^{\prime}=t$, where $y(0)=0$ and $x(0)=1$

Faculty information

